Discovering reliable protein interactions from high-throughput experimental data using network topology
نویسندگان
چکیده
OBJECTIVE Current protein-protein interaction (PPI) detection via high-throughput experimental methods, such as yeast-two-hybrid has been reported to be highly erroneous, leading to potentially costly spurious discoveries. This work introduces a novel measure called IRAP, i.e. "interaction reliability by alternative path", for assessing the reliability of protein interactions based on the underlying topology of the PPI network. METHODS AND MATERIALS A candidate PPI is considered to be reliable if it is involved in a closed loop in which the alternative path of interactions between the two interacting proteins is strong. We devise an algorithm called AlternativePathFinder to compute the IRAP value for each interaction in a complex PPI network. Validation of the IRAP as a measure for assessing the reliability of PPIs is performed with extensive experiments on yeast PPI data. All the data used in our experiments can be downloaded from our supplementary data web site at . RESULTS Results show consistently that IRAP measure is an effective way for discovering reliable PPIs in large datasets of error-prone experimentally-derived PPIs. Results also indicate that IRAP is better than IG2, and markedly better than the more simplistic IG1 measure. CONCLUSION Experimental results demonstrate that a global, system-wide approach-such as IRAP that considers the entire interaction network instead of merely local neighbors-is a much more promising approach for assessing the reliability of PPIs.
منابع مشابه
Mapping of TP53 protein network using cytoscape software
TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...
متن کاملPRINCESS, a Protein Interaction Confidence Evaluation System with Multiple Data Sources*□S
Advances in proteomics technologies have enabled novel protein interactions to be detected at high speed, but they come at the expense of relatively low quality. Therefore, a crucial step in utilizing the high throughput protein interaction data is evaluating their confidence and then separating the subsets of reliable interactions from the background noise for further analyses. Using Bayesian ...
متن کاملPRINCESS, a protein interaction confidence evaluation system with multiple data sources.
Advances in proteomics technologies have enabled novel protein interactions to be detected at high speed, but they come at the expense of relatively low quality. Therefore, a crucial step in utilizing the high throughput protein interaction data is evaluating their confidence and then separating the subsets of reliable interactions from the background noise for further analyses. Using Bayesian ...
متن کاملIncorporating Network Topology Improves Prediction of Protein Interaction Networks from Transcriptomic Data
The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this pape...
متن کاملProtein interaction networks from yeast to human.
Protein interaction networks summarize large amounts of protein-protein interaction data, both from individual, small-scale experiments and from automated high-throughput screens. The past year has seen a flood of new experimental data, especially on metazoans, as well as an increasing number of analyses designed to reveal aspects of network topology, modularity and evolution. As only minimal p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 35 1-2 شماره
صفحات -
تاریخ انتشار 2005